
Eur. Phys. J. D 46, 415–424 (2008)
DOI: 10.1140/epjd/e2007-00320-5 THE EUROPEAN

PHYSICAL JOURNAL D

Long range interactions of the Mg+ and Ca+ ions

J. Mitroya and J.Y. Zhang

Faculty of Technology, Charles Darwin University, Darwin NT 0909, Australia

Received 8 September 2007 / Received in final form 5 October 2007
Published online 23 November 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. The polarizabilities of the low lying states of the Mg+ and Ca+ ions are evaluated by diagonaliz-
ing the semi-empirical Hamiltonians in a large dimension single electron basis. The quadrupole moment of
the metastable 3d state Ca+ is also calculated and is within 1% of a recent experimental value while being
5% smaller than some large ab-initio calculations. In addition, the long range dispersion coefficients for
these ions interacting with a number of atoms are given. Oscillator strengths are also given and generally
agree with the most sophisticated ab-initio calculations. The polarizabilities and dispersion coefficients can
be used to estimate the frequency shifts of the Ca+ 4s → 3d clock transition due to background electric
fields and also collisions with a buffer gas.

PACS. 34.20.Cf Interatomic potentials and forces – 31.50.-x Potential energy surfaces – 32.10.Dk Electric
and magnetic moments, polarizabilities

1 Introduction

This paper gives a systematic presentation of the long
range properties of the Mg+ and Ca+ ions, largely mo-
tivated by the importance of these ions in a number of
application areas. In the case of Ca+, the interest lies in
astrophysics and cold ion physics. First, the absorption
spectrum of the Ca+ ion is used to explore the structure
and properties of interstellar dust clouds [1,2]. Second, the
long lifetime of the 4s→ 3d transition of the Ca+ ion make
it a promising candidate for a trapped ion frequency stan-
dard [3–7]. In addition, the long lifetime of the 3d state
makes it well suited for storing and processing quantum
information [4,8–10]. Finally, there have been a number
of investigations of pressure broadening of the Ca+ tran-
sitions in a variety of buffer gases [11–20]. Knowledge of
the long range part of the ion-atom interaction is useful
in determining the pressure broadening and shift [21,22].

The relevance of Mg+ mainly comes from astrophysics
since it is abundant in the interstellar medium and is one
of the most common metals in interstellar dust [23,24].
One of the reasons for its importance is that magnesium
is found mainly in its singly ionized form in the inter-
stellar medium. There has also been pressure broadening
research [14–17,19,20,25] and Mg+ is one of the few ions
to have had a direct determination of its dipole polariz-
ability [26,27].

In the present work, one-electron models of the Mg+

and Ca+ ions are constructed with a semi-empirical core
potential to describe the interaction of the valence elec-
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tron with the rest of the atom. The polarizabilities and
dispersion coefficients are evaluated using sum rules [28].
All quantities are reported in atomic units, with the ex-
ception of lifetimes and decay rates which are stated in SI
units.

2 Theoretical development

2.1 Overview of dispersion constant calculations

The long range interaction between one electrically
charged atom and one electrically neutral atom has two
components [29–31]. First of all there is the polarization
interaction, which can be written

V (R) = − αd

2R4
− αq

2R6
− · · · (1)

where αd and αq are the dipole and quadrupole polariz-
abilities of the neutral atom. The distance between the
two nuclei is R. This part of the long range interaction
does not lead to a frequency shift between the different
states of the ion.

In addition to this, there is the dispersion interac-
tion. For two spherically symmetric atoms in their ground
states, this interaction can be written [32,33],

V (R) = −C6

R6
− C8

R8
− C10

R10
− · · · (2)

The Cn parameters are the dispersion coefficients. The dis-
persion interaction does lead to a frequency shift between
the ion states when the ion is immersed in a buffer gas.
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The approach used to generate the dispersion co-
efficients [28] is based on the work of Dalgarno who
derived expressions in terms of oscillator strength sum
rules [32,33]. This reduced the calculation of the Cn pa-
rameters for two spherically symmetric atoms to sum-
mations over the products of the absorption oscillator
strengths (originating in the ground state) divided by an
energy denominator. The sums should include contribu-
tions from all discrete and continuum excitations. In prac-
tice a pseudo-state representation is used which gives a
discrete representation of the continuum [28,34,35]. Fi-
nite dimension sums over a pseudo-state basis provide
a rapidly convergent expansion of the continuum of in-
termediate states provided all the pseudo-states are re-
tained [36–38]. The sum over oscillator strengths needs to
be rewritten in terms of a sum over the reduced matrix
elements of the electric multipole operator in cases where
one (or both) of the atoms is in a state with L > 0 [28].

The major part of any calculation involves the gen-
eration of the lists of reduced transition matrix elements
for the two atomic states. In the present approach this
is done by diagonalizing a semi-empirical model potential
in a large single electron basis. This gives the spectrum
of low lying physical states as well as the discretization
of the positive energy continuum. It is then a relatively
straightforward calculation to use the procedure outlined
previously [28] to process the lists of matrix elements and
generate the dispersion coefficients.

2.2 Wave functions and transition operators for Mg+

and Ca+

The wave functions and transition operators com-
puted in this paper were obtained by diagonalizing the
semi-empirical Hamiltonian [35,39–42] in a large mixed
Laguerre type orbital (LTO) and Slater type orbital
(STO) basis set [35].

The initial step was to perform a Hartree-Fock (HF)
calculation to define the core. In this case, calculations of
the Mg 3s2 and Ca 4s2 ground states were done in a STO
basis [43]. The core wave functions were then frozen. The
neutral atom ground state as opposed to the ion ground
state was chosen to define the core for reasons of calcula-
tional convenience. Previous work by one of the authors
(JM) has looked at the structure of Mg and Ca [35,44],
as well as their positronic ions [45–47]. The core poten-
tials used in these previous works (which were defined by
reference to the spectra of the ionic spectrum) are used
in the present calculations. The effective Hamiltonian for
the valence electron is

H = −1
2
∇2 + Vdir(r) + Vexc(r) + Vp(r). (3)

The direct and exchange interactions of the valence elec-
tron with the HF core were calculated exactly. The
�-dependent polarization potential, Vp, was semi-empirical
in nature with the functional form

Vp(r) = −
∑

�m

αdg
2
� (r)

2r4
|�m〉〈�m|. (4)

The coefficient, αd is the static dipole polarizability of
the core and g2

� (r) = 1 − exp
(−r6/ρ6

�

)
is a cutoff func-

tion designed to make the polarization potential finite
at the origin. The cutoff parameters, ρ� were tuned to
reproduce the binding energies of the ns ground state
and the np, nd and nf excited states. The dipole po-
larizabilities were αd = 0.4814 a3

0 for Mg2+ [35,48] and
αd = 3.16 a3

0 for Ca2+ [35,48,49]. The Mg2+ cutoff param-
eters for � = 0 → 3 were 1.1795, 1.302, 1.442 and 1.520 a0

respectively. The Ca2+ cutoff parameters for � = 0 → 3
were 1.6516, 1.6594, 1.9316 and 1.77 a0 respectively. The
energies of the states with � ≥ 1 were assigned to the sta-
tistical average of their respective spin-orbit doublets. The
Hamiltonian was diagonalized in a very large orbital basis
with about 50 Laguerre type orbitals for each �-value. Al-
though the wave functions are constructed as linear combi-
nations of LTOS, all matrix element evaluations were done
using Gaussian quadratures and are accurate to close to
machine precision. The cutoff parameters were different
for each � ≤ 3. The parameters for � > 3 were set to ρ3.

The oscillator strengths (and other multipole expecta-
tion values) were computed with operators that included
polarization corrections [35,40,50–52]. The quadrupole
core polarizability was chosen as 0.5184 a5

0 for Mg2+

[35,53] and 6.936 a5
0 for Ca2+ [35,53] while the octupole

polarizability was set to zero. The cutoff parameter for the
polarization corrections to transition operator was fixed at
1.361 a0 (the average of ρ0, ρ1, ρ2 and ρ3) for Mg+ and
1.75 a0 (the average of ρ0, ρ1 and ρ2) for Ca+.

The model potential is quite realistic since the di-
rect and exchange interactions with the core were com-
puted without approximation from the HF wave function,
and only the core polarization potential is described with
a model potential. Comparisons with more sophisticated
ab-initio methods have revealed that the present semi-
empirical approach often gives oscillator strengths, polar-
izabilities and dispersion coefficients that lie within a cou-
ple of percent of the best calculations [35,54–56]. There is
one complication. The 3d orbital of Ca+ is quite compact
and does penetrate into the core [49,57]. Defining the po-
larization potential by tuning to the 3d energy leads to the
rest of the nd series being slightly under-bound, and then
there is the issue of the accuracy of the 3d state itself. Con-
sequently, quantities which explicitly involve the Ca+ nd
set of states can be expected to have larger uncertainties
than the other states.

2.3 Wave functions and transition operators
for other atoms

The atoms for which the Mg+ and Ca+ interactions are
determined are the hydrogen atom and the rare gases. The
transition data for hydrogen were taken from a pseudo-
state representation of the hydrogen spectrum [35,58–60]
that was generated by diagonalizing a basis of 15 Laguerre
Type Orbitals. The data for helium were taken from a
pseudo-state representation but in this case the underly-
ing basis was a Hylleraas basis capable of giving close to
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Table 1. Theoretical and experimental energy levels (in
hartree) of some of the low-lying states of the Mg+ and Ca+

ions. The energies are given relative to the energy of the Mg2+

and Ca2+ cores. The experimental energies (taken from [62,63])
for the doublet states are averages with the usual (2J + 1)
weighting factors.

State Theory Experimental

Mg+

3s −0.552535 −0.552536
3p −0.389737 −0.389736
4s −0.234324 −0.234481
3d −0.226804 −0.226801
4p −0.185014 −0.185114
5s −0.129667 −0.129751
4d −0.127373 −0.127381

Ca+

4s −0.436287 −0.436278
3d −0.373921 −0.373917
4p −0.320844 −0.320820
5s −0.198293 −0.198588
4d −0.175144 −0.177426
5p −0.160060 −0.160230
4f −0.126189 −0.126188

exact energies and polarizabilities for the low lying states
of helium [28,61].

The pseudo-oscillator strength distributions for the
heavier rare gases came from two sources. The dipole tran-
sition data were taken from the compilation of Kumar and
Meath [64,65] which use high quality experimental data
such as refractive index information to constrain the dis-
tribution. The distributions of Mitroy and Zhang [55] are
used for the quadrupole and octupole transitions. These
data initially use a distribution based on HF expectation
values. This HF distribution was then refined by adjust-
ing the excitation energies to give agreement with sophis-
ticated calculations of the polarizabilities and dispersion
constants [66,67].

3 Results

3.1 The Mg+ energy levels

The binding energies of the low lying states of the Mg+

are tabulated and compared with experiment in Table 1.
The agreement between the present energies and the ex-
perimental energies is good with the largest discrepancy
being 1.5 × 10−4 Hartree.

3.2 The Ca+ energy levels

The binding energies of the low lying states of the Ca+ are
tabulated and compared with experiment in Table 1. The
agreement between the present energies and the experi-
mental energies is generally of order 10−4 Hartree with
the exception of the 4d level where there is a discrepancy

of 2.3× 10−3 Hartree. The value of ρ2 is set to the 3d en-
ergy which penetrates into the core [39,49,52,57]. Tuning
the cutoff parameter to the 3d level leads to the binding
energy of the 4d and higher nd levels being underesti-
mated [39,49].

3.3 Mg+ oscillator strengths

The absorption oscillator strength of multipole k for a
transition from na → nb, with an energy difference of
∆Enbna = Enb

− Ena , is defined as

f (k)
nanb

=
2|〈ψna ;La ‖ rkCk(r̂) ‖ ψnb

;Lb〉|2∆Enbna

(2k + 1)(2La + 1)
. (5)

Table 2 lists the present oscillator strengths for a num-
ber of Mg+ transitions. Values from three other calcula-
tions are also listed [24,69,70]. These include the extensive
sets of data from the coupled cluster with single and dou-
ble excitations (CCSD) [24] and the data from the exten-
sive compilation of Froese-Fischer et al. [69]. The Froese-
Fischer calculation is a B-spline configuration interaction
(CI) which incorporates the Breit interaction in the final
diagonalization (relativistic CI). Finally, there is the large
CI calculation that aimed to get an accurate oscillator
strength for the weak 3s→ 4p transition [70].

The overall level of agreement of the present calcula-
tion with the large scale ab-initio calculations could hardly
be better. For many transitions there is agreement at the
1% level or better.

The 3s→ 4p oscillator strength is known to be partic-
ularly difficult to determine [23,82]. From the theoretical
perspective, there are significant cancellations in the ra-
dial matrix element which make the oscillator strength
particularly susceptible to small changes in the calcu-
lation details. Such is the level of uncertainty for this
transition that the present oscillator strength can be re-
garded as having the same reliability as the ab-initio
calculations. Indeed, the present oscillator strength of
9.21 × 10−4 is closer to the most recent experimental
value of 9.71(32) × 10−4 [23] than two of the ab-initio
calculations.

The electric quadrupole oscillator strength for the
3s → 3d transition is also given in Table 2. Also given
is the oscillator strength derived from line strengths of
the relativistic coupled cluster calculation with single and
double excitations (RCCSD) of Majumder et al. [72] (this
oscillator strength was computed with the energy differ-
ence of the present calculation). This demonstrates that
the present semi-empirical method is capable of giving ac-
curate oscillator strengths for quadrupole transitions.

3.4 Ca+ oscillator strengths

Table 2 lists the oscillator strengths for a number of transi-
tions between the low lying states. Although the lifetime
for the 4p level has been measured on numerous occa-
sions [83,84], it is not possible to directly determine the
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Table 2. Absorption oscillator strengths for various transitions of Mg+ and Ca+. All of the oscillator strengths are for dipole
transitions with three exceptions. Theoretical oscillator strengths from other groups are identified by an acronym denoting the
type of calculation and a citation. In one instance, an oscillator strength is taken from a National Institute of Standards and
Technology (NIST) compilation [68]. Experimental oscillator strengths are denoted as Exp. The numbers in the square brackets
denote powers of ten.

Transition Present Other

Mg+

f (1)
3s→3p 0.9121 0.920 RCI [69], 0.913 CCSD [24], 0.922 CI [70], 0.914(8) Exp. [71]

f (1)
3s→4p 9.21[−4] 7.01[−4] RCI [69], 9.31[−4] CCSD [24], 8.33[−4] CI [70], 9.71(32)[−4] Exp [23]

f (1)
3p→4s 0.1495 0.1495 RCI [69], 0.1456 CCSD [24]

f (1)
3p→3d 0.9405 0.948 RCI [69], 0.937 CCSD [24]

f (1)
4s→4p 1.3929 1.396 RCI [69], 1.3970 CCSD [24]

f (1)
3d→4p 0.1790 0.1801 RCI [69], 0.1811 CCSD [24]

f (2)
3s→3d 15.88 15.70 RCCSD [72],

Ca+

f (1)
4s→4p 0.9606 0.977 MCHF [52], 0.965 MBPT [73], 0.950 MBPT [74], 0.9523 MP [75], 0.970 MBPT [76]

f (1)
4s→5p 0.00172 0.00033 MP [75], 0.00139 MBPT [76]

f (1)
3d→4p 0.0660 0.0646 MCHF [77], 0.0574 MP [75], 0.064 MBPT [74], 0.0600 MBPT [73], 0.0648 MBPT [76]

f (1)
3d→5p 0.00038 0.00070 MP [75]

f (1)
3d→4f 0.1599 0.185 NIST [68], 0.1539 MBPT [76]

f (1)
4p→5s 0.1792 0.168 MP [75]

f (1)
4p→4d 0.8685 0.871 MP [75]

f (2)
4s→3d 2.036 2.02 MCHF [52], 1.897 MBPT [6], 1.938 MBPT [74], 2.12 [78]

f (2)
4s→4d 20.25

resonant 4s→ 4p oscillator strength from this information
since the 4p level can decay into both the 3d and 4s lev-
els. Accordingly, we have converted the present oscillator
strengths listed in Table 2 into a 4p lifetime of 6.80×10−9 s
for comparison with experiment. The two most recent ex-
periments give 6.89(2)×10−9 s [84] and 6.94(7)×10−9 [83]
which are 1–2% larger than the present value (note, these
are the statistical weights of the spin-orbit doublets). This
suggests that present estimate of the resonant oscillator
strength, f4s→4p is too large by 1–2%. This level of accu-
racy is about the same as that achieved by the three many
body perturbation theory (MBPT) calculations [73,74,76]
and the multi configuration Hartree-Fock (MCHF) calcu-
lation [52]. The most recent MBPT calculation by Arora
et al. [76] is the most interesting since it also reported
polarizabilities for the 4s and 3d levels.

The relative scatter between the different calculations
of the 3d → 4p oscillator strength cover a range of 15%.
In absolute terms the differences are not large with a vari-
ation of 0.01 between the largest and smallest oscillator
strengths. It should be noted that Arora et al. MBPT cal-
culation is for the transition originating from the 3d5/2

level. The branching ratio of 17.6 ± 2.0 for the 4p → 4s
and 4s → 3d decays measured by Gallagher [85] can be
used to estimate an experimental oscillator strength of
0.052 ± 0.006 for the 3d → 4p transition (note, this esti-
mate of the oscillator strength is 2% smaller than previous
estimates due to the use of newer estimates of the 4p life-
time). A more precise experimental measurement of the
branching ratio would allow increased accuracy in the de-
termination of the 3d→ 4p oscillator strength.

The transition rate for the 4s→ 3d transition has been
the subject of many recent investigations [6]. The electric-
quadrupole reduced matrix element for the 4s1/2 → 3d3/2

transition has been determined by a MBPT calculation
to be 7.934 while the reduced matrix element for the
4s1/2 → 3d5/2 transition has been determined to be
9.74 [6]. The MBPT matrix elements can be converted
to LS coupled matrix elements by multiplying by

√
6/5

and
√

4/5 respectively to give 8.691 and 8.720. Averag-
ing the two values and using the statistical average of the
4s → 3d energy difference gives an oscillator strength of
f

(2)
4s→3d = 1.897. The current oscillator strength of 2.036

would appear to be too big by 6%.
The decay rate of an LS coupled state decaying by a

quadrupole transition is given by the identity [86]

AE2 =
1.120× 1018

(2Lb + 1)λ5
|〈ψna ;La ‖ rkCk(r̂) ‖ ψnb

;Lb〉|2.
(6)

where λ is given in angstroms. The decay rates from
the MBPT calculation [6] were AE2

3/2 = 0.8361 s−1 and
AE2

5/2 = 0.8584 s−1. The most recent experiment gave
AE2

3/2 = 0.8503(8) s−1 and AE2
5/2 = 0.8562(7) s−1 [6]. These

experimental values are consistent with a number of earlier
experiments [6]. The present calculation using the theo-
retical energy difference gives AE2 = 0.8780 s−1. An inde-
pendent model potential calculation using much the same
approach as used here reported a transition probability
of 0.85 s−1 [52]. Converting this to an oscillator strength
gave 1.97. The reasonable level of agreement can be used
to rule out a gross error in the computation of the 3d state.
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Table 3. The dipole, quadrupole and tensor polarizabilities (for dipole excitations) for the low lying states of Mg+ and Ca+. A
description of the other calculations can be found in the text [20,79]. The quadrupole moments are computed for L = M which
are the same as the J = MJ = L + 1/2 state. Numbers in brackets are estimates of the uncertainties in the last digits.

State α1 (a.u.) α1,2LL (a.u.) α2 (a.u.) α3 (a.u.) QLL

Present Other Present Present Other Present Present

Mg+

3s 35.01 34.6 RCC [79] 0 156.1 156.2 RCC [79] 1715 0

35.1 f (1)-sums [80]
33.8 Experiment [26]

35.02(4) Experiment [81]

3p 31.81 131.2 f (1)-sums [20] 1.163 341.7 1.184[4] −2.756
4s 555.1 0 6.751[4] 6.942[5] 0
3d 188.6 −112.1 −9.610[3] 2.855[5] −8.438
4p 113.5 77.45 2.713[4] 2.435[6] −13.41

Ca+

4s 75.49 73.89 RCC [79] 0 875.1 706.6 RCC [79] 8990 0
76.1(1.1) MBPT [76]

74.05 f (1)-sums [80]

3d 32.73 28.7 f (1)-sums [20] −25.20 −2.844 5.220[3] −1.819
32.1(1.1) MBPT [76]

4p −2.032 3.19 f (1)-sums [20] 10.47 1.080[3] 4.126[4] −4.239
5s 983.5 7.281[4] 2.468[6] 0
4d 1209 −879.8 1618 3.639[6] −16.59
5p −1135 286.2 7.123[4] 3.335[6] −12.67

It is somewhat surprising, but few large scale ab-
initio calculations of the oscillator strengths have been
performed for any other transitions. Accordingly, com-
parisons with the model potential (MP) calculations of
Melendez et al. [78] for these other transitions in Table 2
are made. The comparisons cannot provide a stringent test
of the present calculation, rather they are mainly suitable
for detecting gross errors.

3.5 Quadrupole moments

Of the quadrupole moments given in Table 3, the one of
most interest is that of the Ca+ 3d state. This is due to the
possible use of the Ca+ 3d → 4s transition as an optical
frequency standard [87].

The quadrupole moment of this state has recently been
determined in two recent large scale calculations [87,88].
The relativistic configuration interaction (RCI) calcula-
tions of Itano et al. [87] gave quadrupole moments of
Q3/2 = 1.338 a.u. and Q5/2 = 1.917 a.u. for the 3d3/2 and
3d5/2 states respectively. The relativistic coupled-cluster
(RCC) approach recently gave quadrupole moments of
Q3/2 = 1.338 a.u. and Q5/2 = 1.916 a.u. [88]. A recent ex-
periment has determined the quadrupole moment, Q5/2,
to be 1.83(1) a.u. [7].

The present estimate of the quadrupole moment for
the 3d level is 1.819 a.u., which is some 5% smaller than
the two calculations, but close to the recent experiment.
The polarization correction to the quadrupole operator
makes a substantial contribution to Q5/2. Evaluation of
the quadrupole expectation value without the polariza-
tion correction gives Q5/2 = 1.985 a.u. Examination of the

convergence pattern of the RCI calculation reveals that
substantial cancellations exist between some quite large
terms. So the apparently very precise agreement between
the RCI and RCC calculations could easily be acciden-
tal. While the present calculation is not definitive, it does
raise questions about the precision of the RCC and RCI
estimates of the quadrupole moments.

3.6 Mg+ polarizabilities

There has been a direct determination of the Mg+ ground
state polarizability from the energy differences of high
angular momentum states [26]. The value obtained was
33.8+0.5

−0.3 a3
0. Polarizabilities of the lowest states of Mg+

are listed in Table 3 and present calculation gave 35.01 a3
0

This is closer to the determination of the Theodosiou
et al. [80], αd = 35.1 a3

0 which used the most accurate
estimates of the Mg+ oscillator strengths in the usual
sum rule (note, the present core polarizability has been
added to the polarizability given in [80]). A more re-
cent experiment by Snow and Lundeen which deduced
the Mg+ polarizabilities from the fine structure of high-
� Rydberg levels [81] gave αd = 35.02(0.04) a3

0. The re-
cent calculation, and the results of Theodosiou [80] and
Snow [81] strongly suggest that the dipole polarizability
of Mg+ is close to 35.0 a3

0 Snow also reports the coeffi-
cient of the 1/r6 term of the polarization interactions as
(αq − 6β) = −434 ± 48 a3

0 where β is the non-adiabatic
dipole polarizability [81,89]. The present calculation gives
a non-adiabatic dipole polarizability of β = 105.83 a5

0,
yielding (αq − 6β) = −478.9± 48 a5

0 which lies within the
error limits of Snow.
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The polarizability for the 3p state is actually smaller
than that of the ground state, most probably due to the
contribution from the downward transition to the ground
state. This is different from most of the alkali metals which
have the dipole polarizability of the np excited state larger
than that of the ground state [28].

3.7 Ca+ polarizabilities

The polarizabilities of the lowest six levels of Ca+ are
listed in Table 3 and compared with the results of other
calculations. The dipole polarizability for the ground
state, 75.49 a3

0 is about 2% larger than an independent
estimates that should be reasonably precise. Theodosiou
et al. [80] used a single electron Coulomb Approxima-
tion which gave a statistically averaged 4p lifetime of
6.94 × 10−9 (i.e. the same as an experiment [83]) to es-
timate a valence polarizability of 74.05 a3

0 (note, a core
polarizability of 3.16 a3

0 was been added to their valence
polarizability of 70.89 a3

0). Another estimate of 73.89 a3
0

comes from an all-electron relativistic coupled cluster
(RCC) calculation [79]. It is most likely that the current
polarizability is too large by 1–2% since the 4p lifetime
suggests that the resonant oscillator strength is too large
by 1–2%.

The ground state quadrupole polarizability of 875.1 a5
0

is about 20% larger than the RCC polarizability of
706.6 a5

0 [79]. More than 93% of the polarizability arises
from the transitions to the 3d and 4d states and the tran-
sition to the 3d level contributes about 65% of the fi-
nal polarizability. The large discrepancy in the polariz-
ability is especially puzzling since we have computed the
quadrupole polarizability of Mg+ using the present ap-
proach, and obtain a value that agrees with the RCC αq

of 156.2 a.u. [79] to within 1%. There are some other cal-
culations of the quadrupole polarizability for Ca+ [90,91],
but the approximations used in these earlier calculations
are sufficiently gross so as to exclude them shedding light
on the present discrepancy.

The f (2)
4s→3d oscillator strength contributes 523.4 a3

0 to
αq. The next term involving the f (2)

4s→4d oscillator strength
contributes 296.9 a3

0. Changing f (2)
4s→3d to the experimen-

tal value of 1.90 would reduce its contribution to αq to
488.5 a3

0. A large reduction in f (2)
4s→4d of order 50% would

then be required to get an αq that agreed with the rel-
ativistic coupled cluster (RCC) value of 706.6 a3

0. Such
a change does not seem feasible. First, this oscillator
strength was insensitive to changes in the model poten-
tial, changing ρ2 to 1.8316 resulted in a downward shift of
the 4d level by 0.001 Hartree, while increasing the f (2)

4s→4d
oscillator strength by 2%. Second, the oscillator strength
was not very sensitive to modifications in the polarization
correction to the transition operator, omitting the correc-
tion completely changed f

(2)
4s→4d by less than 0.1%. The

good agreement of f (1)
4p→4d with the independent model

potential value (see Tab. 2) [78] eliminates the possibility

of a gross error in the shape of the 4d wave function. The
most likely source of error lies in the RCC calculation [79].

The dipole polarizability of the 3d level is smaller than
that of the 4s level because there are no strong transitions
originating from this level. The present polarizability is
in agreement with the recent MBPT calculation [76] to
within the quoted uncertainty.

The difference between the polarizabilities of the 4s
and 3d states contributes to the black-body shift through
the approximate result [76],

∆ν = −1
2

(831.9 V/m)2
(
T (K)
300

)4

(αd(3d) − αd(4s)) .

(7)
The polarizabilities in equation (7) are assumed to be
in SI units which can be obtained by multiplying the
values in Table 3 by 2.48832 × 10−8 [76]. Using the
present polarizabilities gives ∆ν = 0.368 Hz at 300 K,
in reasonable agreement with the recent MBPT value of
0.38 ± 0.01 Hz [76].

The present polarizabilities for the excited states of
Ca+ in most cases represent the only calculations of
the polarizabilities for these states. One other calcula-
tion is based on summing oscillator strengths from tab-
ulations [20] and the overall level of agreement is within
±5 a3

0. One curiosity is the very small polarizability of
−2.032 a3

0 for the 4p state. This is caused by cancella-
tions between the negative oscillator strengths for down-
ward transitions and the positive oscillator strengths for
upward transitions.

4 Long range interactions with buffer atoms

The polarization interaction between the charged ion and
any neutral specifies depends on the polarizabilities of the
neutral species. A recent tabulation of polarizabilities for
the rare gases can be found in a recent paper that re-
ported dispersion interactions of Na and Mg with the rare
gases [55]. No more will be said on this topic since our
main interest is in those long range interactions that will
contribute to a frequency shift between two different ion
states, and the polarization interaction does not lead to a
frequency shift.

4.1 Mg+ dispersion coefficients with buffer atoms

The dispersion coefficients of a number of Mg+ states in-
teracting with hydrogen and the rare gases are listed in
Tables 4, 5 and 6. There is relatively little data available
for comparison [17,20]. It is not absolutely clear how the
Monteiro et al. [17] estimates were determined so they are
not quoted here.

The C6 estimate of Barklem et al. [20] for
the Mg+(3s)-H configuration uses the Mg+ oscillator
strengths which are taken from experiment and the
coulomb approximation [80]. As such, there is no contribu-
tion from the Mg2+ core. However, the hydrogen oscillator
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Table 4. The dispersion coefficients (in a.u.) between the
Mg+(3s), Mg+(4s), Ca+(4s) and Ca+(5s) states and the rare
gas atoms and atomic hydrogen. The Barklem et al. esti-
mates [20] used oscillator strength sums to evaluate the dis-
persion constants. The numbers in the square brackets denote
powers of ten.

System C6 C8 C10

Mg+

Mg+(3s)-H 28.80 7.531[2] 2.511[4]

f (1)-sums [20] 27.0
Mg+(3s)-He 10.91 2.527[2] 7.461[3]
Mg+(3s)-Ne 21.58 5.543[2] 1.749[4]
Mg+(3s)-Ar 80.64 2.437[3] 8.880[4]
Mg+(3s)-Kr 118.3 3.887[3] 1.544[5]
Mg+(3s)-Xe 182.9 6.919[4] 3.139[5]
Mg+(4s)-H 203.6 2.005[4] 2.280[6]
Mg+(4s)-He 63.90 6.396[3] 7.399[5]
Mg+(4s)-Ne 123.9 1.273[4] 1.502[6]
Mg+(4s)-Ar 506.4 5.357[4] 6.418[6]
Mg+(4s)-Kr 765.0 8.229[4] 9.999[6]
Mg+(4s)-Xe 1234 1.371[5] 1.712[7]

Ca+

Ca+(4s)-H 51.78 1.960[3] 8.5372[4]

f (1)-sums [20] 43.3
Ca+(4s)-He 19.72 659.1 2.692[4]
Ca+(4s)-Ne 39.14 1.396[3] 5.983[4]
Ca+(4s)-Ar 145.1 5.967[3] 2.820[5]
Ca+(4s)-Kr 212.8 9.354[3] 4.696[5]
Ca+(4s)-Xe 329.1 1.618[4] 8.982[5]
Ca+(5s)-H 290.0 3.903[4] 5.932[6]
Ca+(5s)-He 92.23 1.237[4] 1.911[6]
Ca+(5s)-Ne 179.1 2.443[4] 3.831[6]
Ca+(5s)-Ar 727.5 1.023[5] 1.621[7]
Ca+(5s)-Kr 1097 1.566[5] 2.503[7]
Ca+(5s)-Xe 1764 2.588[5] 4.218[7]

strength distribution is based on an Unsold type approxi-
mation [20,92] where the entire distribution is represented
by a single term with an appropriately chosen excitation
energy. So it is not surprising that the Barklem et al. C6

estimate of 27.0 a.u. is 5% smaller than the present value
of C6 = 28.80 a.u.

The dispersion coefficient for the Mg+(4p)-H and
Mg+(4p)-He configurations are presented because of the
importance of the 4p→ 3s line in astrophysics [23,24].

The accuracy of the dispersion coefficients are esti-
mated at 1–2% for the C6 values since most of the dipole
oscillator strengths relevant to the C6 calculation have an
accuracy approaching this level. The C8 and C10 values
involving neon and the heavier rare gases will have larger
uncertainties since the quadrupole and octupole pseudo-
oscillator strengths are less tightly constrained than the
dipole oscillator strengths. A source of error for Mg+ lies
in the small energy difference between the 4s and 3d levels.
The small imperfections in the current energies for these
levels will be magnified in the determination of C8 and
C10 for the Mg+(4s) and Mg+(3d).

Table 5. The dispersion coefficients (in a.u.) between the
Mg+(3p), Mg+(4p) and Ca+(4p) states and the rare gas atoms
and atomic hydrogen. The Barklem et al. estimates [20] used
oscillator strength sums to evaluate the dispersion constants.
The numbers in the square brackets denote powers of ten.

System C6 C8 C10

Mg+

Mg+(3p)-H Σ 85.62 4.969[3] 2.465[5]
Mg+(3p)-H Π 41.90 426.7 1.066[4]

f (1)-sums [20] Σ 110.5

f (1)-sums [20] Π 63.1
Mg+(3p)-He Σ 25.79 1.670[3] 7.984[4]
Mg+(3p)-He Π 14.23 95.56 1.815[3]
Mg+(3p)-Ne Σ 50.26 3.387[3] 1.722[5]
Mg+(3p)-Ne Π 27.97 266.8 5.543[3]
Mg+(3p)-Ar Σ 205.5 1.408[4] 7.766[5]
Mg+(3p)-Ar Π 108.9 1.561[3] 4.344[4]
Mg+(3p)-Kr Σ 313.1 2.167[4] 1.261[6]
Mg+(3p)-Kr Π 162.6 2.790[3] 9.031[4]
Mg+(3p)-Xe Σ 514.3 3.646[4] 2.312[6]
Mg+(3p)-Xe Π 258.4 5.813[3] 2.240[5]
Mg+(4p)-H Σ 415.5 1.160[5] 1.943[7]
Mg+(4p)-H Π 230.9 4.335[3] 3.049[5]
Mg+(4p)-He Σ 128.8 3.676[4] 6.232[6]
Mg+(4p)-He Π 73.06 1.268[3] 9.754[4]

Ca+

Ca+(4p)-H Σ 132.0 1.193[4] 7.954[5]
Ca+(4p)-H Π 72.31 818.0 2.461[4]

f (1)-sums [20] Σ 114.5

f (1)-sums [20] Π 65.4
Ca+(4p)-He Σ 42.11 3.948[3] 2.599[5]
Ca+(4p)-He Π 25.04 225.7 5.215[3]
Ca+(4p)-Ne Σ 82.28 7.896[3] 5.442[5]
Ca+(4p)-Ne Π 49.36 584.6 1.464[4]
Ca+(4p)-Ar Σ 329.7 3.261[4] 2.379[6]
Ca+(4p)-Ar Π 190.2 3.080[3] 9.827[4]
Ca+(4p)-Kr Σ 497.4 4.983[4] 3.774[6]
Ca+(4p)-Kr Π 283.2 5.324[3] 1.935[5]
Ca+(4p)-Xe Σ 802.6 8.250[4] 6.672[6]
Ca+(4p)-Xe Π 448.5 1.065[4] 4.547[5]

4.2 Ca+ dispersion coefficients with buffer atoms

The dispersion coefficients for the Ca+ ground state in-
teracting with hydrogen and the rare gases are listed in
Table 4. Dispersion coefficients involving the 4p and 3d
excited states are given in Tables 5 and 6 respectively.

The Ca+(4s)-H value of C6 is about 20% larger than
the value of Barklem et al. [20] for reasons discussed in
the previous section. There are no other estimates of dis-
persion coefficients involving the Ca+ ground state with
any other atom.

The dispersion coefficients for the 3d states are about
twice as large as the values of Barklem et al. [20]. This
is probably due to the omission of the 3d → ε� contin-
uum in the intermediate sum of Barklem et al. The total
oscillator strength sum of Barklem et al. for dipole tran-
sitions originating from the 3d level, i.e.

∑
i f

(1)
3d→nl was
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Table 6. The dispersion coefficients (in a.u.) between the 3d
states of Mg+ and Ca+ and the rare gas atoms and atomic
hydrogen. The Barklem et al. estimates [20] used oscillator
strength sums to evaluate the dispersion constants. The num-
bers in the square brackets denote powers of ten.

System C6 C8 C10

Mg+

Mg+(3d)-H Σ 170.5 3.044[4] 3.753[6]
Mg+(3d)-H Π 149.7 1.015[4] 2.710[5]
Mg+(3d)-H ∆ 87.30 −866.5 −4.094[3]
Mg+(3d)-He Σ 51.64 8.922[3] 1.213[6]
Mg+(3d)-He Π 45.76 3.157[3] 7.551[4]
Mg+(3d)-He ∆ 28.13 −382.2 −2.458[3]
Mg+(3d)-Ne Σ 100.2 1.755[4] 2.432[6]
Mg+(3d)-Ne Π 88.84 6.378[3] 1.843[5]
Mg+(3d)-Ne ∆ 54.82 −580.5 −4.967[3]
Mg+(3d)-Ar Σ 412.7 7.383[4] 1.025[7]
Mg+(3d)-Ar Π 364.6 2.693[4] 9.652[5]
Mg+(3d)-Ar ∆ 220.1 −1.265[3] −3.173[3]
Mg+(3d)-Kr Σ 627.5 1.142[5] 1.583[7]
Mg+(3d)-Kr Π 553.5 4.194[4] 1.686[6]
Mg+(3d)-Kr ∆ 331.2 −942.94 2.408[4]
Mg+(3d)-Xe Σ 1025 1.830[5] 2.677[7]
Mg+(3d)-Xe Π 902.1 6.857[4] 3.467[6]
Mg+(3d)-Xe ∆ 532.6 1.388[3] 1.356[5]

Ca+

Ca+(3d)-H Σ 27.16 1.910[3] 1.088[5]
Ca+(3d)-H Π 24.75 752.6 1.550[4]
Ca+(3d)-H ∆ 17.51 152.6 3.191[3]

f (1)-sums [20] Σ 15.7

f (1)-sums [20] Π 13.9

f (1)-sums [20] ∆ 8.7
Ca+(3d)-He Σ 11.36 644.8 3.576[4]
Ca+(3d)-He Π 10.52 260.7 3.387[3]
Ca+(3d)-He ∆ 8.008 36.20 385.1
Ca+(3d)-Ne Σ 22.95 1.323[3] 7.584[4]
Ca+(3d)-Ne Π 21.31 572.1 9.771[3]
Ca+(3d)-Ne ∆ 16.40 118.9 1.515[3]
Ca+(3d)-Ar Σ 80.34 5.441[3] 3.334[5]
Ca+(3d)-Ar Π 73.93 2.425[3] 6.163[4]
Ca+(3d)-Ar ∆ 54.71 669.3 1.464[4]
Ca+(3d)-Kr Σ 116.3 8.352[3] 5.326[5]
Ca+(3d)-Kr Π 106.8 3.823[3] 1.152[5]
Ca+(3d)-Kr ∆ 78.24 1.192[3] 3.125[4]
Ca+(3d)-Xe Σ 177.0 1.393[4] 9.541[5]
Ca+(3d)-Xe Π 162.0 6.673[3] 2.543[5]
Ca+(3d)-Xe ∆ 117.1 2.435[3] 8.013[4]

only 0.444 whereas a number closer to unity would have
been expected. The omission of the core by Barklem et al.
can also be expected to result in the dispersion coefficients
being underestimated.

The dispersion coefficients of the 3d level are generally
smaller than the dispersion coefficients of the 4s level. This
occurs because there are no strong transitions between
the 3d level and the other low lying levels of Ca+ (refer
to dipole oscillator strengths in Tab. 2). The lack of any

strong transitions to the low lying states also manifested
itself in the smaller polarizabilities of the 3d state.

Given that the polarizability of the 4p state is so small
it is surprising that the dispersion coefficients involving
this state are larger than those involving the 4s ground
state. This is explained by the energy distribution of the
4p oscillator strength set. The transitions to the 3d and
4s states with negative oscillator strengths involve smaller
transition energies than any of the upward transitions. So
the impact of the downward transitions is maximized in
the polarizability calculation with its 1/∆E2 energy de-
nominator, but the downward transitions have less im-
pact in the C6 calculation which involves different energy
weighting factors.

The overall accuracy of the dispersion coefficients in-
volving the Ca+(4s) and Ca+(4p) states should be com-
parable to those involving the 3s and 3p states of Mg+.
In cases where transition moments involving the 3d state
make a significant contribution one can expect the uncer-
tainties in the derived Cn coefficients to be larger.

5 Conclusions

A survey of atomic parameters of the Mg+ and Ca+ ion
states relevant to the description of long range interactions
have been computed with a semi-empirical method. The
most important parameters are the dispersion coefficients
of the excited states with the buffer gases as there is little
quantitative data (e.g. Ref. [20]) despite the large number
of pressure broadening experiments.

The polarizabilities and dispersion coefficients for the
Ca+(4s) and Ca+(3d) states are relevant to the utiliza-
tion of the 3d → 4s transition as an optical frequency
standard [3,4,6,87]. The difference between the two polar-
izabilities contributes to the black-body shift in the tran-
sition frequency. The differences between the dispersion
constants can be used to give an initial estimate of the
pressure shift of the Ca+ 4s-3d transition in a rare gas
buffer by using the impact approximation [21,22]. It would
be straightforward to compute the polarizabilities and dis-
persion coefficients of other alkaline-earth ions.

The authors would like to thank Shane Caple and Corey
Hoffman of CDU for workstation support. The authors would
like to thank Kelin Gao of the Wuhan Institute of Physics and
Mathematics for suggesting we investigate the properties of the
Ca+ ion.
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